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Examen – Modélisation Numérique des Solides et Structures : partie pratique.
Notes et livre du cours autorisés

2h, 24 points (2
3 de la note de l’examen écrit)

Indication : Aucun des exercices ne nécessite de calculs lourds

Exercice 1 : Essai oedométrique avec gravité, 12 points

On considère un bloc cylindrique de section circulaire de surface A, et de hauteur H dans la direction z (voir
figure 1). Il est placé dans un conteneur indéformable de même géométrie. Le contact entre le conteneur et
le bloc est sans frottement et sans détachement.

Un piston indéformable, astreint à coulisser dans le conteneur, est en contact sans frottement et sans déta-
chement avec la partie supérieure du bloc.

Le bloc est constitué d’un matériau élastique linéaire isotrope homogène, de caractéristiques ρ, λ, µ et on
appelle E∗ = λ + 2µ. Le piston est soumis à un déplacement vertical (−δez). Pour commencer on néglige
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Figure 1 – Le bloc cylindrique de section constante A et de hauteur H est confiné par une paroi rigide
(bleu) de même rayon que le cylindre non déformé (vert). Le piston (rouge) est déplacé rigidement de δ dans
la direction des z négatif.

les effets de la gravité. On propose comme solution à ce problème le champ de déplacement :

u(r, θ, z) = u(z)ez =
(

a
z2

H2 + b
z

H

)
ez (1)

(1) Trouver la relation entre a et b pour que les conditions aux limites soient satisfaites. (1 point)



We verify that u(z = 0) = 0, ∀a, b. By imposing u(z = H) = −δ, we obtain a + b = −δ

(2) Calculer le tenseur des déformations (1 point)

Given the simple expression for the displacement the strain is simply obtained by

ϵzz(z) = du(z)
dz

= b

H
+ 2az

H2 , (2)

while all the other components are null.
(3) Montrer que l’énergie élastique totale Utot est : (2,5 points)

Utot = AE∗ (3δ2 + a2)
6H

.

In order to compute the strain energy density we first compute the stress from the linear elastic law :

σ = 2µϵ + λtr(ϵ)I =

λϵ 0 0
0 λϵ 0
0 0 E∗ϵ

 (3)

From this the elastic strain energy is

U = 1
2σijϵij = 1

2σzzϵzz = 1
2E∗ϵ2

zz = E∗

2

(
b

H
+ 2az

H2

)2
(4)

The total energy is simply obtained by integrating the density over the volume

Utot =
∫

V
UdV = A

∫ H

0

E∗

2

(
b

H
+ 2az

H2

)2
dz = AE∗

(
2a2

3H
+ ab

H
+ b2

2H

)
= AE∗ (3δ2 + a2)

6H
(5)

where in the last step we made use of the relationship a + b = −δ found before.

(4) Le système étant en déplacement contrôlé, le travail des forces extérieures est nul et l’énergie potentielle
est donc égale à l’énergie élastique. Trouver les paramètres du champ de déplacement qui minimisent
cette énergie potentielle. Auriez-vous pu intuiter ce champ de déplacement ? Pourquoi ? La solution
trouvée est-elle exacte ? ? Commenter brièvement sans calcul (1,5 points)

The minimal energy principle reads in our case :

dUtot

da
= 0 → AE∗a

3H
= 0 ⇐⇒ a = 0 (6)

As a consequence we find b = −δ and a linear displacement field, u(z) = −δz/H and a constant strain
field ϵ = −δ/H. Given the displacement imposed to the cylinder and the geometry of the problem, we
could have guessed the linear displacement field.

The solution is indeed the exact one because the problem is identical to ex. 2 series 10, where we already
verified :
— the equilibrium equation ∇ · σ = 0
— the solution is continuous and integrable in the whole domain
— boundary conditions

On prend maintenant en compte l’effet de la gravité qui agit dans la direction des z négatifs. Le piston subit
toujours le même déplacement δ. On garde le champ de déplacement défini à l’équation 1.
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(5) Montrer que le travail W exercé par le champ gravitationnel est : (1 point)

W = AρgH

(
−a

3 − b

2

)
The work done by the volume force is

W =
∫

V
ρg · u dV = A

∫ H

0
−ρug dz = AρgH

(
−a

3 − b

2

)
(7)

(6) Minimiser l’énergie potentielle totale pour trouver les nouvelles valeurs de a et b. Commenter votre
solution. (1,5 points)

The total energy is now the difference between the energy computed previously and the work done by
gravity

U ′
tot = Utot − W = AE∗ (3δ2 + a2)

6H
+ AρgH

(
a

3 + b

2

)
. (8)

By computing the derivative with respect to the parameter a we find

dU ′
tot

da
= 0 → AE∗a

3H
− ρAgH

6 = 0 ⇐⇒ a = ρgH2

2E∗ (9)

Exploiting the boundary condition we obtain b = −δ − ρgH2

2E∗ . The body force made the displacement
field quadratic.

(7) Calculer la pression exercée par la paroi. Quelle condition doit satisfaire δ pour éviter que le cylindre se
détache de la paroi (c’est-à-dire pour avoir p > 0) ? (2 points)

By substituting the values of a and b we obtain

u(z) = z
(
−2E∗δ − H2ρg + Hρgz

)
2E∗H

, (10)

ϵ(z) = − δ

H
+ ρg

E∗

(
z − H

2

)
. (11)

The stress tensor is the same as in equation 3. It follows that

p = −σr = λ

[
δ

H
+ ρg

E∗

(
H

2 − z

)]
. (12)

The minimum pressure is obtained at the top and imposing p(z = H) > 0 yields

δ > ρgH2/(2E∗) . (13)

(8) Donner l’expression de la contrainte tangentielle maximale. La calculer pour les points à z = 0 et dessi-
ner le cercle de Mohr pour ces points. Pourquoi la calcule-t-on à z = 0 ? (1,5 points)

As the stress tensor is diagonal the stress components are the principal ones. Since σrr = σθθ = σ2 the
Mohr circle is the one passing through the point σ2 and σzz = σ1. The maximum tangential stress is
computed with the usual formula :

τmax(z) = |σ1 − σ2|
2 = µ

∣∣∣∣− δ

H
+ ρg

E∗

(
z − H

2

)∣∣∣∣ (14)

Given equation 13, it turns out τmax is maximum for z = 0

τmax(z = 0) = µ

(
δ

H
+ ρgH

2E∗

)
(15)

The Mohr circle is shown in figure 2, where ϵ = − δ
H − ρgH

2E∗ .
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Figure 2 – Mohr circle

Exercice 2 : Disque intervertébral, 8 points

Le disque intervertébral humain est un vaisseau à paroi épaisse. L’image en figure 3 montre sa composition en
couches fibreuses stratifiées avec un noyau gélatineux (nucleus pulposis). La paroi structurelle stratifiée est
fermement attachée aux vertèbres adjacentes. On peut estimer approximativement les contraintes générées
dans l’anneau par le rapprochement des vertèbres et la compression du disque.

Figure 3 – Disque intervertébral

Modélisons le disque comme un anneau isotrope linéaire élastique (E, ν) rempli d’un fluide incompressible
(figure 4). Lorsque la charge F est transmise d’une vertèbre à l’autre, une partie de la charge est transmise
par la pression P dans le fluide et une autre partie par une contrainte axiale σzz appliquée à l’anneau.
Supposons que le disque soit uniformément comprimé. On considère également que ur << 1 et εzz << 1.

(1) Les contraintes en tout point de l’anneau sont similaires à celles d’un tube à paroi épaisse, soumis à une
pression interne et une contrainte uniaxiale en z. En coordonnées cylindriques, on donne :

σrr = a2P

b2 − a2 (1 − b2

r2 )

σθθ = a2P

b2 − a2 (1 + b2

r2 )

σzz = cst

Les autres composantes sont nulles.
Calculer les contraintes sur la paroi de l’anneau en contact avec le fluide. Commenter le résultat. (1 point)
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Figure 4 – Géométrie du problème.

Correction :
Sur la paroi fluide/anneau, on a r = a. On y évalue les contraintes et on obtient les résultats suivants :

σrr(a) = −P

σθθ(a) = P

(
a2 + b2

b2 − a2

)

(2) Donner le tenseur des déformations ε. (1.5 points)

Correction :
Le tenseur des contraintes est de la forme :

σ =

σrr 0 0
0 σθθ 0
0 0 σzz


A partir de la formule suivante, on trouve le tenseur des déformations ε :

ε = 1
E

((1 + ν)σ − νtrσ)

On obtient :

εrr = 1
E

(
a2P

b2 − a2

(
1 − b2

r2

)
− ν

a2P

b2 − a2

(
1 + b2

r2

)
− νσzz

)

εθθ = 1
E

(
a2P

b2 − a2

(
1 + b2

r2

)
− ν

a2P

b2 − a2

(
1 − b2

r2

)
− νσzz

)

εzz = 1
E

(
σzz − 2ν

a2P

b2 − a2

)

(3) Donner le champ de déplacement u de l’anneau. En coordonnées cylindriques, la relation entre déplace-
ment et déformation est la suivante :

εrr = ∂ur

∂r

εθθ = ur

r
+ 1

r

∂uθ

∂θ

εzz = ∂uz

∂z
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Les constantes d’intégration sont supposées nulles. (1.5 points)

Correction :
Le champs de déplacement u est :

u = 1
E


a2P

b2−a2

(
r + b2

r

)
− ν a2P

b2−a2

(
r − b2

r

)
− νσzzr

0(
σzz − 2ν a2P

b2−a2

)
z


(4) En supposant que le fluide est incompressible, donner la relation entre ur(a) et uz(h0). Sachant que

ur << 1 et εzz << 1, on négligera les termes d’ordre ≥ 2. (1.5 points)

Correction :
En supposant que le fluide est incompressible, le volume reste inchangé.

πa2h0 = π(a + ur(a))2(h0 + uz(h0))
a2h0 = (a2 + ur(a)2 + 2aur(a))(h0 + uz(h0))

Sachant que ur << 1 et εzz << 1, on néglige les termes de second ordre.

auz(h0) = −2h0ur(a) (16)

(5) En utilisant la relation trouvé dans la question précédente, et en remplaçant ur(a) et uz(h0) par l’éva-
luation de u en a et h0, on peut trouver la relation liant la pression du fluide P à la contrainte σzz de
l’anneau suivante :

σzz

(2ν − 1
2

)
= P

(
γ2 + 1
γ2 − 1 − ν

γ2 − 1 + ν

)

A partir de cette formule, trouver le rapport entre la force reprise par le fluide Ffluide et celle reprise
par l’anneau Fanneau, en fonction de γ = b/a. (1.5 points)

Correction :
Les forces Ffluide et Fannulus sont calculées de la manière suivante :

Ffluide = −P (πa2)
Fanneau = σzzπ(b2 − a2)

Le rapport entre ces deux forces est donné par :
Ffluide

Fanneau
= −P

σzz

1
γ2 − 1

= 1 − 2ν

2
1

γ2(1 + ν) + 1 − 2ν

(6) Pour quelle condition sur γ = b/a a-t-on l’aire du fluide égale à l’aire de l’anneau. Que vaut le rapport
Ffluide/Fanneau dans ce cas là ? (1 point)

Correction :
L’aire du fluide égale à celle de l’anneau nous donne :

πa2 = π(b2 − a2)
γ =

√
2

Le rapport Ff /Fa donne :

Ffluide

Fanneau
= 1 − 2ν

6
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Exercice 3 : Corps soumis à une pression externe, 4 points

P

P

S1

S2 S2

S1

Figure 5 – Gauche : corps soumis à une pression externe (problème à résoudre). Droite : corps soumis
à une pression interne (problème dont on connait la solution).

On cherche à trouver le tenseur des contraintes σ dans un solide soumis à une pression externe uniforme sur
sa surface S2 (figure 5 gauche). On considère que l’on connait déjà le tenseur des contraintes σ1 de ce même
solide lorsqu’il est soumis à une pression interne uniforme sur sa surface S1 (figure 5 droite). On cherche à
résoudre ce problème à l’aide d’une simple superposition.

Trouver le tenseur des contraintes σ. Représenter schématiquement votre raisonnement et expliquer le
principe utilisé.

P P

S1

S2

P

S2

S1
= +

Figure 6 – Utilisation du principe de superposition pour résoudre le problème.

On résout ce problème en utilisant le principe de superposition qui s’applique pour un solide élastique
linéaire. Le problème étudié est la superposition des deux problèmes montrés dans la figure 6.

Le solide représenté au centre de la figure 6 est soumis à une pression hydrostatique sur toute sa surface S2.
Le tenseur des contraintes est donc :

σ2 =

−P 0 0
0 −P 0
0 0 −P

 .

L’équation d’équilibre en absence de force volumique div(σ2) = 0 est satisfaite par ce tenseur des contraintes.
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La solution finale du problème est donc :

σ = σ2 − σ1 =

−P 0 0
0 −P 0
0 0 −P

+ σ1.
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