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Examen — Modélisation Numérique des Solides et Structures : partie pratique.

Notes et livre du cours autorisés
2h, 24 points (3 de la note de U'ezamen écrit)

Indication : Aucun des exercices ne nécessite de calculs lourds

Exercice 1 : Essai oedométrique avec gravité, 12 points

On considére un bloc cylindrique de section circulaire de surface A, et de hauteur H dans la direction z (voir
figure . Il est placé dans un conteneur indéformable de méme géométrie. Le contact entre le conteneur et
le bloc est sans frottement et sans détachement.

Un piston indéformable, astreint a coulisser dans le conteneur, est en contact sans frottement et sans déta-
chement avec la partie supérieure du bloc.

Le bloc est constitué d’un matériau élastique linéaire isotrope homogene, de caractéristiques p, A, i et on
appelle E* = X\ + 2u. Le piston est soumis & un déplacement vertical (—de,). Pour commencer on néglige
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FIGURE 1 — Le bloc cylindrique de section constante A et de hauteur H est confiné par une paroi rigide
(bleu) de méme rayon que le cylindre non déformé (vert). Le piston (rouge) est déplacé rigidement de ¢ dans
la direction des z négatif.

les effets de la gravité. On propose comme solution & ce probléme le champ de déplacement :

(1,0,2) = u(z)e. = (a2 + b2 1
u(r,6,2) = u(z)e; = | apm +b; | e

~—

(1) Trouver la relation entre a et b pour que les conditions aux limites soient satisfaites. (1 point)



We verify that u(z = 0) = 0, Va,b. By imposing u(z = H) = —d, we obtain a + b = —§
(2) Calculer le tenseur des déformations (1 point)

Given the simple expression for the displacement the strain is simply obtained by

du(z) b  2az
S TR ER )

while all the other components are null.
(3) Montrer que I'énergie élastique totale Uiy est : (2,5 points)
AE* (362 + a?)

Utot = 6H .

In order to compute the strain energy density we first compute the stress from the linear elastic law :

X 0 O
o=2ue+ r(e)I=10 Xe 0 (3)
0 0 FE%e
From this the elastic strain energy is
1 1 1, E* (b 2az\?
U= 306 = 50226 = §E S - (H + H2> (4)

The total energy is simply obtained by integrating the density over the volume

HE* (b 2az\? 2a¢> ab V? AE* (362 + a?
U = [ udv =a [ 2 (5432 dz—AE*<a+a+>— Er+a) o
14 0

H ' H? 3H H ' 2H 6H

where in the last step we made use of the relationship a + b = —¢ found before.

(4) Le systeme étant en déplacement contrdlé, le travail des forces extérieures est nul et I’énergie potentielle
est donc égale a I’énergie élastique. Trouver les parametres du champ de déplacement qui minimisent
cette énergie potentielle. Auriez-vous pu intuiter ce champ de déplacement ? Pourquoi? La solution
trouvée est-elle exacte ? 7 Commenter brievement sans calcul (1,5 points)

The minimal energy principle reads in our case :

dUtot o AFE*a _ _
G =00 e =0 = a=0 (6)
As a consequence we find b = —§ and a linear displacement field, u(z) = —dz/H and a constant strain

field e = —0/H. Given the displacement imposed to the cylinder and the geometry of the problem, we
could have guessed the linear displacement field.

The solution is indeed the exact one because the problem is identical to ex. 2 series 10, where we already
verified :

— the equilibrium equation V-o =0

— the solution is continuous and integrable in the whole domain

— boundary conditions

On prend maintenant en compte 'effet de la gravité qui agit dans la direction des z négatifs. Le piston subit
toujours le méme déplacement §. On garde le champ de déplacement défini a 1’équation



()

Montrer que le travail W exercé par le champ gravitationnel est : (1 point)

The work done by the volume force is

H a b
W:/ pg-udV:A/ —pugdz = ApgH <——) (7)
1% 0 3 2

Minimiser 1’énergie potentielle totale pour trouver les nouvelles valeurs de a et b. Commenter votre
solution. (1,5 points)

The total energy is now the difference between the energy computed previously and the work done by
gravity
AE* (362 + a?)

Ujpr = Utor = W = oI

+ ApgH (g + 12)) . (8)

By computing the derivative with respect to the parameter a we find

dUjy AE*a  pAgH _ pgH?
— =0— ST 6 =0 < a= Vo 9)
Exploiting the boundary condition we obtain b = —§ — 24 ® The body force made the displacement

2EF
field quadratic.

Calculer la pression exercée par la paroi. Quelle condition doit satisfaire § pour éviter que le cylindre se
détache de la paroi (c’est-a-dire pour avoir p > 0) ? (2 points)

By substituting the values of @ and b we obtain

_ z(-2E*6 — H?pg + Hpyz)

= 1
o pg H
- 1 7 - ). 11
)=+ o+ 5) (1)
The stress tensor is the same as in equation (3| It follows that
6  pg (H
=—o=\|—+Z(Z_2)|. 12
p=-r =g+ 5 (5 -5)] 12
The minimum pressure is obtained at the top and imposing p(z = H) > 0 yields
§ > pgH?/(2E™). (13)

Donner I'expression de la contrainte tangentielle maximale. La calculer pour les points & z = 0 et dessi-
ner le cercle de Mohr pour ces points. Pourquoi la calcule-t-on & z =07 (1,5 points)

As the stress tensor is diagonal the stress components are the principal ones. Since o, = 099 = o9 the
Mohr circle is the one passing through the point o2 and ., = 0;. The maximum tangential stress is
computed with the usual formula :

o1 — 09 ) H
RTINS
Given equation it turns out Tyge 1S maximum for z = 0

) H
rnaa(z = 0) = 1 (H + o ) (15)
The Mohr circle is shown in figure 2| where € = —% — ggEIf .
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FIGURE 2 — Mohr circle

Exercice 2 : Disque intervertébral, 8 points

Le disque intervertébral humain est un vaisseau & paroi épaisse. L’image en figure [3] montre sa composition en
couches fibreuses stratifiées avec un noyau gélatineux (nucleus pulposis). La paroi structurelle stratifiée est
fermement attachée aux vertebres adjacentes. On peut estimer approximativement les contraintes générées
dans ’anneau par le rapprochement des vertébres et la compression du disque.

a b
Vertebral Paosterior ~—— — Annulus .
Nucleus body Z——fibrosus.
End plates ~Ji &, A\
pulposus = A
i ~ Nucleus ) ) | |}}J|J)
i s f}n’ 1
{ ))) '.'| __Intervertebral /&
-\t ' I disc
Anterior ~ Annulus ~ Posterior
fibrosus AR A
— Vertebral 0 ¥ Anterior
body Spine axis

F1GUrE 3 — Disque intervertébral

Modélisons le disque comme un anneau isotrope linéaire élastique (E, v) rempli d’un fluide incompressible
(figure . Lorsque la charge F' est transmise d’une vertebre a ’autre, une partie de la charge est transmise
par la pression P dans le fluide et une autre partie par une contrainte axiale o,, appliquée a ’anneau.
Supposons que le disque soit uniformément comprimé. On considére également que u, << 1 et ,, << 1.

(1) Les contraintes en tout point de 'anneau sont similaires a celles d’un tube a paroi épaisse, soumis a une
pression interne et une contrainte uniaxiale en z. En coordonnées cylindriques, on donne :

a’P b?
=)

a’P b?
=gzt )
0., = Cst

Les autres composantes sont nulles.
Calculer les contraintes sur la paroi de ’anneau en contact avec le fluide. Commenter le résultat. (1 point)



Plaques rigides (vertébres)

Fluide incompressible Pas de friction a l’interface

FIGURE 4 — Géométrie du probleme.

Correction :
Sur la paroi fluide/anneau, on a r = a. On y évalue les contraintes et on obtient les résultats suivants :

orr(a) =—P

a? + b2

o00(e) = P\ oz

(2) Donner le tenseur des déformations e. (1.5 points)

Correction :
Le tenseur des contraintes est de la forme :

o 0 0
o=|0 oggp O
0 0 o0,

A partir de la formule suivante, on trouve le tenseur des déformations € :

€= l((1 +v)o — vtro)

FE
On obtient :

1 a’P b2 a’P b2

=gl \! ) poa 1) e
1 a’P b2 a’P b2

EQQZE b2 — a2 1+r2 ) 1_7‘2 T VO
1 a?P

Ezz = E Ozz — 2Vb2 P

(3) Donner le champ de déplacement u de 'anneau. En coordonnées cylindriques, la relation entre déplace-
ment et déformation est la suivante :

. _ Ouy
T or

_up  10ug
£00 = T +7’ 00
- _ Ou,



Les constantes d’intégration sont supposées nulles. (1.5 points)

Correction :
Le champs de déplacement u est :

’p b? ’p b2
e Pt T) v (T ) T vosr
0

’p
<0ZZ — 21/133_7(12) z

| —

En supposant que le fluide est incompressible, donner la relation entre u,(a) et u,(hg). Sachant que
up << 1 et e,, << 1, on négligera les termes d’ordre > 2. (1.5 points)

Correction :
En supposant que le fluide est incompressible, le volume reste inchangé.

ma*ho = m(a +u,(a))?(ho + uz(ho))
a’hy = (a® + uy(a)? + 2au,(a)) (ho + u-(ho))
Sachant que u, << 1 et €,, << 1, on néglige les termes de second ordre.
au (ho) = —2houy(a) (16)

En utilisant la relation trouvé dans la question précédente, et en remplacant u,(a) et u,(hg) par I'éva-
luation de u en a et hg, on peut trouver la relation liant la pression du fluide P & la contrainte o,, de

l’anneau suivante :
2v—1 ¥ +1 v
Uzz( 9 >:P<72_1—72_1+1/>

A partir de cette formule, trouver le rapport entre la force reprise par le fluide Fyjyqe et celle reprise
par Panneau Fyppeqy, €n fonction de v = b/a. (1.5 points)

Correction :
Les forces Fryide €t Fannuius sont calculées de la maniere suivante :

Fliyide = —P(ma®)
Fannean = 0227 (> — a®)
Le rapport entre ces deux forces est donné par :
Frryige —P 1

Fonneau Ozz 72 -1
1-2v 1

2 YA+v)+1-2v

Pour quelle condition sur v = b/a a-t-on 'aire du fluide égale a l’aire de 'anneau. Que vaut le rapport
Ftiyide/ Fanneau dans ce cas 14?7 (1 point)

Correction :
L’aire du fluide égale a celle de I’anneau nous donne :

7TCL2

m(b% — a?)

V2

~

Le rapport Fy/F, donne :

Fuide _ 1 —2v
Fanneau 6

6



Exercice 3 : Corps soumis a une pression externe, 4 points

P ¢ J

Sz SZ

FIGURE 5 — Gauche : corps soumis a une pression externe (probleme a résoudre). Droite : corps soumis
a une pression interne (probléme dont on connait la solution).

On cherche a trouver le tenseur des contraintes o dans un solide soumis a une pression externe uniforme sur
sa surface Sy (figure |5 gauche). On considere que 'on connait déja le tenseur des contraintes o1 de ce méme
solide lorsqu’il est soumis & une pression interne uniforme sur sa surface S; (figure |5| droite). On cherche a
résoudre ce probleme a ’aide d’une simple superposition.

Trouver le tenseur des contraintes o. Représenter schématiquement votre raisonnement et expliquer le
principe utilisé.

S

FIGURE 6 — Utilisation du principe de superposition pour résoudre le probléme.

On résout ce probleme en utilisant le principe de superposition qui s’applique pour un solide élastique
linéaire. Le probléeme étudié est la superposition des deux problémes montrés dans la figure [6

Le solide représenté au centre de la figure [6] est soumis & une pression hydrostatique sur toute sa surface Ss.
Le tenseur des contraintes est donc :

-P 0 0
g9 = 0 -P 0
0 0 -—-P

L’équation d’équilibre en absence de force volumique div(eo2) = 0 est satisfaite par ce tenseur des contraintes.



La solution finale du probleme est donc :

—-P 0 0
oco=09—01=|0 —-P 0 |+o1.
0 0 -—-P



